
www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 1, MARCH 1976

On the Design and Development of E1rpFnneialniIies
DAVID L. PARNAS IM1UL,.- D

.31NGhiAMiC,,jEkaW YORK 13902

cannot always design all algorithms before implementation of
the system. These algorithms are invariably improved experi-
mentally after the system is complete. This need for the exis-
tence of many experimental versions of a system is yet another
reason for interest in "multiversion" programs.

It is well known that the production and maintenance of
multiversion programs is an expensive problem for software
distributors. Often separate manuals and separate mainte-
nance groups are needed. Converting a program from one ver-
sion to another is a nontrivial (and hence expensive) task.
This paper discusses two relatively new programming

methods which are intended explicitly for the development of
program families. We are motivated by the assumption that if
a designer/programmer pays conscious attention to the family
rather than a sequence of individual programs, the overall cost
of development and maintenance of the programs will be re-
duced.' The goal of this paper is to compare the methods,
providing some insight about the advantages and disadvantages
of each.

CLASSICAL METHOD OF PRODUCING PROGRAM FAMILIES
The classical method of developing programs is best de-

scribed as sequential completion. A particular member of the
family is developed completely to the "working" stage. The
next member(s) of the family is (are) developed by modifica-
tion of these working programs. A schematic representation
of this process is shown by Fig. 1. In this figure a node is rep-
resented as a circle, if it is an intermediate representation on
the way to producing a program, but not a working program
itself. An X represents a complete (usable) family member.
An arc from one node to another indicates that a program (or
intermediate representation of a program) associated with the
first node was modified to produce that associated with the
second.
Each arc of this graph represents a design decision. In most

cases each decision reduces the set of possible programs under
consideration. However, when one starts from a working
program, one generally goes through a reverse step, in which
the set of possible programs is again increased (i.e., some de-
tails are not decided). Nodes 5 and 6 are instances of this.
When a family of programs is produced according to the

above model, one member of the family can be considered to
be an ancestor of other family members. It is quite usual for

,Some preliminary experiments support this assumption [1], [2],
but the validity of our assumption has not yet been proved in practice.
Readers who do not want to read about programming techniques based
on this unproved assumption should stop reading here.

Abstract-Program families are defined (analogously to hardware fam-
ilies) as sets of programs whose common properties are so extensive
that it is advantageous to study the common properties of the programs
before analyzing individual members. The assumption that, if one is to
develop a set of similar programs over a period of time, one should
consider the set as a whole while developing the first three approaches to
the development, is discussed. A conventional approach called "sequen-
tial development" is compared to "stepwise refinement" and "specifica-
tion of information hiding modules." A more detailed comparison of
the two methods is then made. By means of several examples it is
demonstrated that the two methods are based on the same concepts
but bring complementary advantages.

Index Terms-Information hiding modules, module specifications,
program families, software design methodology, software engineering,
stepwise refimement.

INTRODUCTION

IITE consider a set of programs to constitute a family,
whenever it is, worthwhile to study programs from the
set by first studying the common properties of the set

and then determining the special properties of the individual
family members. A typical family of programs is the set of
versions of an operating system distributed by a manufac-
turer. While there are many significant differences between
the versions, it usually pays to learn the common properties of
all the versions before studying the details of any one. Pro-
gram families are analogous to the hardware families promul-
gated by several manufacturers. Although the various models
in, a hardware family might not have a single component in
common, almost everyone reads the common principles of
operations" manual before studying the special characteristics
of a specific model. Traditional programming methods were
intended for the development of a single program. In this
paper, we propose to examine explicitly the process of de-
veloping a program family and to compare various program-
ming techniques in terms of their suitability for designing such
sets of programs.

MOTIVATION FOR INTEREST IN FAMILIES

Variations in application demands, variations in hardware
configurations, and the ever-present opportunity to improve a
program mean that software will inevitably exist in many ver-
sions. The differences between these versions are unavoidable
and purposeful. In addition, experience has shown that we

Manuscript received November 3, 1975.
The author is with the Research Group on Operating Systems I,

Fachbereich Informatik, Technische Hochschule Darmstadt, Darmstadt,
West Germany.



www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

STARTT

q 3

Fig. 1. Representation of development by sequential completion.
Note: nodes 5 and 6 represent incomplete programs obtained by re-
moving code from program 4 in preparation for producing programs
1, 8, and 9. Symbols: El is the set of initial possibilities; 0 is the in-
complete program; X is the working program.

descendants of a given program to share some of its ancestor's
characteristics which are not appropriate to the purpose of the
descendants. In bringing the earlier version to completion,
certain decisions were made which would not have been made
if the descendant program had been developed independently.
These decisions remain in the descendant program only be-
cause their removal would entail a great deal of reprogram-
ming. As a result, later versions of the program have perfor-
mance deficiencies, because they were derived by modifying
programs designed to function in a different environment or
with a different load.

NEW TECHNIQUES
Fig. 2 shows the common basic concept of newer methods.

Using these methods one never modifies a completed program
to get a new family member; one always begins with one of
the intermediate stages and continues from that point with de-
sign decisions, ignoring the decisions made after that point in
the development of the previous versions. Where in the
classical method one can say that one version of the program is
the ancestor of another, here we find that the two versions
have a common ancestor [3].
The various versions need not be developed sequentially. If

the development of one branch of the tree does not use infor-
mation from another branch, the two subfamilies could be de-
veloped in parallel. A second important note is that in these
methods the order in which decisions are made has more sig-
nificance than in the classical method. Recall that all decisions
made above a branch point are shared by all family members
below that point. In our motivation of the family concept we
emphasized the value of having much in common among the
family members. By deciding as much as possible before a
branch point, we increase the "similarity" of the systems. Be-
cause we know that certain differences must exist between the
prog;-ams, the aim of the new design methods is to allow the
decisions, which can be shared by a whole family, to be made
before those decisions, which differentiate family members.
As Fig. 2 illustrates, it is meaningful to talk of subfamilies

which share more decisions than are shared by the whole
family.

If the root of the tree represents the situation before any de-
cisions are made, then two programs, which have only the root
as common ancestor, have nothing in common.
We should note that representing this process by a tree is an

oversimplification. Certain design decisions can be made with-
out consideration of others (the decision processes can be
viewed as commutative operators). It is possible to use design
decisions in several branches. For example, a number of quite
different operating systems could make use of the same dead-
lock prevention algorithm, even if it was not one of the deci-
sions made in a common ancestor.

REPRESENTING THE INTERMEDIATE STAGES
In the classical method of producing program families, the

intermediate stages were not well defined and-the incomplete
designs were not precisely represented. This was both the
cause and the result of the fact that communication between
versions was in the form of completed programs. If either of
the two methods discussed here is to work effectively, it is
necessary that we have precise representations of the inter-
mediate stages (especially those that might be used as branch
points). Both methods emphasize precision in the descriptions
of partially designed programs. They differ in the way that
the partial designs are represented. We should note that it is
not the final version of the program, which is our real product
(one seldom uses a program without modification); in the new
methods it is the well-developed but still incomplete represen-
tation that is offered as a contribution to the work of others.

PROGRAMMING BY STEPWISE REFINEMENT
The method of "stepwise refinement"2 was first formally in-

troduced by Dijkstra [3] and has since been further discussed
by a variety of contributors [4]-[6]. In the literature the
major emphasis has been on the production of correct pro-
grams, but the side effect is that the method encourages the
production of program families. One of the early examples
was the development of a program for generation of prime
numbers in which the next to the last program still permitted
the use of two quite different algorithms for generating
primes. This incomplete program defined a family of pro-
grams which included at least two significantly different
members.
In "stepwise refinement" the intermediate stages are repre-

sented by programs, which are complete except for the imple-
mentation of certain operators and operand types. The pro-
grams are written as if the operators and operands were "built
in" the language. The implementation of these operators in
the actual language is postponed to the later stages. Where the
(implicit or explicit) definition of the operators is sufficiently
abstract to permit a variety of implementations, the early ver-
sions of the program define a family in which there is a mem-

2The reader should note that although stepwise refinement is often
identified with "goto less programming," the use and abuse of the goto
is irrelevant in this paper.

2



www.manaraa.com

PARNAS: DESIGN OF PROGRAM FAMILIES3

L

x< X5

I .2 34 5

Fig. 2. Representation of program development using "abstract deci-

sions." Symbols: 0 is the set of initial possibilities; 0 is the incom-

plete program; X is the working programi.

ber for each possible imnplementation of the unimplemented

operators and operands. For example, a program might be

written with a declaration of a data type stack and operators

push and pop. Only in later versions would the stack represen-

tation and procedures to execute push and ppbe introduced.

We illustrate the technique of stepwise refinement with two

examples, which will be used in a later comparison.

Exampke 1), Dijkstra's Prime Program: Dijkstra [31 has de-

scribed the development of a program to print numbers. The

first step appears as follows:

begin variable table p;

fill table p with first thousand prime numbers;

print table p;

end

In this program Dijkstra has assumed an operand type

"table" and two operators. The representation of the table,

the method of calculating the primes, and the printing format

are all left undecided. In fact, the only binding decisions

(common characteristics of the whole famnily of programs) are

that all the primes will be developed before any are printed,

and that we will always want the first thousand primes.

Dijkstra then debates between implementing table or elaborat-

ing "fill table." Eventually he decides that "table" should be

implemented, and all members of the remaining family share

the same table implementation. A branch of the famiily with

an alternative table implementation is mentioned, but not de-

veloped. Later members of the family are developed by con-

sidering various possible methods of computing the prime

numbers.

Example 2), Wuif's KWIC Index Program: Wulf [5] presents

a proposed stepwise refinement development of a KWIC index

production program as follows:

Step 1: PRINTKWIC

We may think of this as being an instruction in a lan-

guage (or machine), in which the notion of generating

a KWIC index is primiitive. Since this operation is not

primitive in most practical languages, we proceed to
define it:
Step 2: PRINTKWIC: generate and save all

interesting circular
shifts

alphabetize the saved
lines

print alphabetized lines
Again we may think of each of these lines as being an

instruction in an appropriate language; and again, since
they are not primitive in most existing languages, we
must define them; for example:
Step 3 a: generate and save all interesting

circular shifts:

for each line in the input do
begin
generate and save all inter-

esting shifts of "this
line"

end
etc.

For purpos'es of later comparison, we note the decisions that
must be shared by the remaining members of the family:

1) all shifts will be stored;
2) all circular shifts will be generated and stored before al-

phabetization begins;
3) alphabetical ordering will be completed before printing is

started;
4) all shifts of the one line will be developed before any of

the shifts for another line';
5) "uninteresting" shifts will be elirminated at the time that

the shifts are generated.
In the best-known examples of programming by stepwise re-
fmement the definitions lof the operators have been informal.
All of the published examples have been designed as tutorial
examples, and the operators are kept "classical" so that one's
intuitive understanding of them suffices for the correct under-
standing of the program development. The only exception
known to the author is [11] .3 Formal definition of the opera-
tors can be included by application of the predicate inser-
tion technique first introduced by Floyd for the purpose
of program verification. As Dijkstra has suggested, we can
think of the operators as "predicate transformers" (rules
which describe how a predicate which describes the state of
the program variables after application of the operator can be
transformed into a predicate describing the. state of the pro-
gram variables before the operator is executed [7])

TECHNIQUE OF MODULE SPECIFICATION

Another technique for the design of program families has
been described in [8], [91. This method is distinguished from
the method of stepwise refinement in that the intermediate
representations are not incomplete programs. ,Instead, they
are "6specifications" of the externally visrible collective be-

3In this example the method failed to produce a correct program be-
cause the intuitive understanding of the operators was too vague.

3



www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

havior of program groups called modules.4 These intermediate
representations are not written in a programming language,
and they never become part of the final system.
To illustrate this method we compare the development of

the KWIC program described in [8], [9] with the develop-
ment by stepwise refinement discussed earlier in this paper.
In the method of "module specification" the design deci-

sions which cannot be common properties of the family are
identified and a module (a group of programs) is designed to
hide each design decision. For our example, the following de-
sign decisions were identified:

1) the internal representation of the data to be processed;
2) the representation of the circular shifts of those lines and

the time at which the shifts would be computed;
3) the method of alphabetization, which would be used, and

the time at which the alphabetization would be carried
out;

4) the input formats;
5) the output formats;
6) the internal representation of the individual words (a part

of decision 1).

To hide the representation of the data in memory, a module
was provided which allows its users to simply write CHAR (line,
word, c) in order to access a certain character. Data were
"stored" in this module by calling SETCHAR (line, word, c, d).
Other functions in the module would report the number of
lines, the number of words in a given line, and the number of
characters in a word. By the use of this group of programs the
rest of the program could be written in a way that was com-
pletely independent of the actual representation.
A module quite similar in appearance to the one described

above hid the representation of the circular shifts, the time at
which they were computed, even whether or not they were
ever stored. (Some members of the program family reduced
storage requirements by computing the character at a given
point in the list of shifts whenever it was requested.) All of
these implementations shared the same external interface.

Still another pair of programs hid the time and method of
alphabetization. This (2 program) module provided a function
ITH (i) which would give the index in the second module for
the i-th line in the alphabetic sequence.
The decisions listed above are those which are not made, i.e.,

postponed. The decisions which were made are more difficult
to identify. The design has placed restrictions on the way that
program parts may refer to each other and has, in that way,
reduced the space of possible programs.
The above description is intended as a brief review for those

who already have some familiarity with the two methods.
Those who are new to the ideas should refer to the original
articles before reading further.'

4Naur has called a similar concept "action clusters" [10] .
5For symmetry we remark that while stepwise refinement was de-

veloped primarily to assist in the production of correct programs and
has a pleasant side effect in the production of program families, module
specification was developed for the production of program families
but helps with "correctness" as discussed in [14]1.

COMPARISON BASED ON THE KWIC EXAMPLE
To understand the differences in the techniques the reader

should look at the list of decisions which define the family of
KWIC programs whose development was started by Wulf. All
of the decisions which are shared by the members of Wulfs
family are hidden in individual modules by the second method
and can therefore differentiate family members. Those deci-
sions about sequencing of events are specified early in Wulfs
development but have been postponed in the second method.
Lest one think that in the second method no decisions about

implementation have been made, we list below some of the
common properties of programs produced using the second
method.

1) All programs will have access to the original character
string during the process of computing the KWIC index.
2) Common words such as THE, AND, etc., would not be

eliminated until the output stage (if ever).
3) The output module will get its information one character

at a time.
The astute reader will have noted that these decisions are

not necessarily good ones. Nonetheless, decisions have been
made which allow work on the modules to begin and progress
to completion without further interaction between the pro-
grammers. In this method the aim of the early work is not to
make decisions about a program but to make it possible to
postpone (and therefore easily change) decisions about the
program. Later work should proceed more quickly and easily
asaresult [1].
In the stepwise refinement method we progressed quickly

toward a relatively narrow family (limited variations in the
family). With modules we have prepared the way for the de-
velopment of a relatively broad family.

COMPARATIVE REMARKS BASED-ON DIJKSTRA'S
PRIME PROGRAM

We now take a second look at the Dijkstra development of
the prime number program.

In his development Dijkstra is moved to make an early deci-
sion about the implementation of TABLE in order to go
further. All members of the family developed subsequently
share that implementation. Should he decide to go back and
reconsider that decision, he would have to reconsider all of the
decisions made after that point. The method of module speci-
fication would have allowed him to postpone the table imple-
mentation to a later stage (i.e., to hide the decision) and
thereby achieve a broader family.

COMPARATIVE REMARKS BASED ON AN OPERATING
SYSTEM PROBLEM

We consider the problem of core allocation in an operating
system. We assume that we have a list of free core areas and
data that should be brought to core storage. Writing a pro-
gram that will find a free spot, and allocate the space to the
program needing it, is trivial. Unfortunately there are many
such programs, and we cannot be certain which of them we
want. The programs can differ in at least two important ways,

4



www.manaraa.com

PARNAS: DESIGN OF PROGRAM FAMILIES

policy and implementation of the mechanism. By "policy"
we mean simply the rule for choosing a place, if there are
several usable places; by "implementation of the mechanism"
we mean such questions as, how shall we represent the list of
free spaces, what operations must we perform to add a free
space to the list, to remove a free space? Should the list be
kept in a special order? What is the search procedure? etc.
The decisions discussed above are important in that they can

have a major impact on the performance of a system. On the
other hand, we cannot pick a "best" solution; there is no best
solution!
On the policy side there have been numerous debates be-

tween such policies as "first fit"-allocate the first usable space
in the list, "best fit"-fimd the smallest space that will fit,
"favor one end of core," "modified best fit"-look for a piece
that fits well but does not leave a hopelessly small fragment,
etc. It is clear to most who have studied the problem that the
"best" policy depends on the nature of the demand, i.e., the
distribution of the requested sizes, the expected length of time
that an area will be retained, and so on.
Choosing an implementation is even more complicated be-

cause it depends in part on the policy choice. Keeping a list
ordered by size of fragment is valuable if we are going to seek
a "best fit" but worse than useless for a policy which tends to
put things as low in core as possible.
The following "structured programming" development of

such an algorithm illustrates the construction of an abstract
program which has the properties of all of those that we are
interested in and does not yet prejudice our choice.

stage 1:
bestyet := null;

while not all spaces considered do

begin
find next item from list of free spaces (candidate)
best yet : bestof (bestyet,candidate)

end
if bestyet = null then erroraction

allocate (best yet); remove (best yet)

Strictly following the principles of writing well-structured
programs we should now verify that the above is correct or
write down the conditions under which we can be certain that
it is correct.
Correctness Assumptions:
1) "bestyet" is a variable capable of indicating a free space;

null is a possible value of this variable indicating no space.
2) "not all spaces considered" is a predicate which will be

true as long as it is possible that a "better" space is still to be
found but will be false when all possible items have been
considered.
3) "candidate" is a variable of the same type as bestyet.
4) "find next item from list of free spaces" will assign to its

parameter a value indicating one of the items on the free space
list. If there are n such items on the list, n calls of the proce-
dure will deliver each of the n items once.

5) No items will be removed from or added to the list dur-
ing the execution of the program.
6) "bestof" is a procedure which takes two variables of the

type of bestyet and returns (as a value of the same type) the
better of the two possible spaces according to some unspecified
criterium. If neither place is suitable, the value is "null,"
which is always unsuitable.

7) "error action" is what the program is supposed to do if
no suitable place can be found.
8) "remove" is a procedure which removes the space indi-

cated by its parameter from the list of free spaces. A later
search will not find this space.
9) "allocate" is a procedure which gives the space indi-

cated by its parameter to the requesting program.
10) Once we have begun to execute this program, no other

execution of it will begin until this one is complete (mutual
exclusion).

11) The only other program which might change the data
structures involved is one that would add a space to the free
space list. Mutual exclusion may also be needed here.

DESIGN DECISIONS IN STAGE 1

Although this first program appears quite innocuous, it does
represent some real design decisions which are best understood
by considering programs which do not share the properties of
the above abstract program.

1) We have decided to produce a program in which one is
not allowed to add to the free space list during a search for
a free space.
2) We have not allowed a program in which two searches

will be conducted simultaneously.
3) We are considering only programs where a candidate is

not removed from the free space list while it is being considered.
Perfectly reasonable programs could be written in which the
"bestyet" was not on the list and was reinserted in the list
when a better space was discovered.
4) We have chosen not to use a program in which a check

for possible allocation is made before searching the list. Some
reasonable programs would have a check for the empty list, or
even a check for the size of the largest available space before
the loop so that no time would be spent searching for an op-
timum fit when no fit at all was possible. In our program, an
assignment to "bestyet," an evaluation of the termination
condition, plus an evaluation of "bestyet=null" will take place
every time the program is called.
The programs omitted from the family of programs which

share the abstract program of stage 1 are not significant omis-
sions. If they were, we would not have chosen to eliminate
them at such an early stage in our design. We have discussed
them only so that the reader will see that writing the program
of stage 1 has not been an empty exercise.
We now consider a subfamily of the family of programs de-

fined in stage 1. In this subfamily we will decide to represent
the list by a two-dimensional array in which each row repre-
sents an item in the free space list. We assume further that the
first free space is kept in row 1, that the last is in row N, and
that all rows between 1 and N represent valid free spaces. We
make no assumptions about the information kept in each row
to describe the free space nor the' order of rows in the array.
This allows us to write the following:



www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

stage 2:
bestyet := 0;
candidate = O;

while candidate # N do
begin

candidate = candidate +1;
bestyet := bestof (bestyet,candidate)

end
if bestyet = 0 then erroraction;

allocate (bestyet)
remove (bestyet).

We have been able to allow the variables "bestyet" and "candi-
date" to be integers to implement the test for "not all spaces
considered" as an integer test on the value of "candidate" be-
cause of our assumptions. Our assumptions do not yet per-
mit us to elaborate the operations on the table rows or to im-
plement our policy decision in "best of." We cannot even
implement "remove," because we do not know if we are going
to allocate all of the space found or allocate only that part
needed and leave the rest on the free space list.

STAGE 3

We now skip several stages in a "proper" structured pro-
gramming development in order to show one of the possible
"concrete" family members. In this program we have decided
that the entries in each row of the array will give the first and
last locations of each free space and that when we allocate a
space we will allocate the whole space so as to avoid having to
keep track of an ever increasing set of small fragments. We
also assume a policy of "best fit" which means that we pick
the smallest of the suitable free spaces.

bestyet := 0;
candidate := 0;
OLDT := oo

while candidate $ N do

begin

candidate :- candidate +1

T := (end (candidate)-start (candidate))
if T > request A T < OLDT then begin

bestyet := candidate
OLDT : T end;

end;
if bestyet = 0 then erroraction;

allocate (bestyet)
N :N-1;

for I := bestyet step 1 until N do begin

END[I] := END [1+1];
START[I] :=START[I+1];

end;

To understand the value of structured programming in produc-
ing programming families, we now have to consider what
would happen if, instead of the program developed in stage 3,
we wanted a program in which 1) we did not allocate the
smallest suitable space but only that part of it that was needed
and 2) we represented the free spaces by giving the start
address and the length rather than start and end addresses. We
consider making this change in two situations.

Situation 1: We wrote the program shown in stage 3 in the
classical way, i.e., we wrote that program directly without
writing down the intermediate stages.
Situation 2: We used the structured programming develop-

ment as shown above.
In situation 1 we would have to modify the programs shown

in the section in stage 3. We would have nothing else. As you
can see, it would take some effort to identify which lines in
the program could remain and which could or should be
changed. Even on this rather simple example it would require
a fairly careful study of the program to determine which
changes should be made unless the person making the changes
was very familiar with the program (e.g., unless he personally
had just written it).
In situation 2, however, we have the option of returning to

the program labeled "stage 2." All the assumptions made in
stage 2 are still valid and the program itself is still valid, only
incomplete. Completing the program shown in stage 2 in
order to produce the new nonabstract program is as straight-
forward as the original modification of stage 2 to get stage 3.
It can be done by someone new. In this situation the new
final program is obtained not by modifying the old working
program but by modifying the closest common ancestor.

If the organization in charge of maintaining the system
wishes to keep both versions in active use, they can use the
stage 2 documentation as valid documentation for both ver-
sions of the program and even consider some changes for both
versions by studying stage 2.
This example was intended to demonstrate why structured

programming is such a valuable tool for those who wish to
maintain and develop families of programs such as operating
systems. The reader must keep in mind that this is a small and
simple example, the benefits would be even greater for larger
programs developed in this way.
Although we have shown an advantage for development of

program families by using structured programming we have
also revealed a fundamental problem. Progress at each stage
was made by making design decisions. Going back to stage 2
was possible in our case because we had in stage 2 all of those
design decisions which we wanted to keep and none of those
which we wanted to discard. Unless we were able to predict
in advance exactly which decisions we would change and
which we would keep, we are not likely to be so lucky in prac-
tice. In fact, even with the ability to see into the future, there
might not be any decision making sequence which would allow
us to backtrack without discarding the results of decisions
which will remain unchanged. The results of perfectly valid
design decisions may have to be recoded, because the code
that implements those decisions was designed to interact with
the code that is being changed.

It is to get around these difficulties that the division into
"information hiding" modules can be introduced. Rather
than continually refine step by step a single program, as is
done in stepwise refinement, we break the program up into in-
dependent parts and develop each of them in ignorance of the
implementation of the other. In contrast to classical program-
ming methods, these parts are not the subprograms which
are called from a main program; they are collections of
subprograms.

6



www.manaraa.com

PARNAS: DESIGN OF PROGRAM FAMILIES

In our example we would have a free space list module,
allocation module, and a selection criterium module. The free
space list module would consist of

1) the code which implemented the variable bestyet and any

other variable that could represent a place in a list as well

as the representation of the constant null;
2) the program "not all spaces considered";
3) the program "find next item from the list of free spaces";
4) the program "remove";
5) a program to add items to the free space list (this pro-

gram is not called in the above program, but must be
called elsewhere in the system and would be considered
a part of the free space list module);

6) programs to give the essential characteristics of a space

on the list (e.g., start and end address).

The selection criterium module would consist of

1) bestof;
2) some other programs which will be called elsewhere, such

as programs to choose a victim (a space to be removed
from its owner and made available).

The allocation module consists of "allocate" and other pro-
grams not discussed above. Each of these modules would
have to contain an initialization section which would be called
from the main program so that the additional temporary vari-
ables introduced in implementing the programs would not be
visible in the main program. For some implementations of a

module the initialization section would be empty, but its call
would be written in the main program so that the main pro-

gram would not have to be changed if the new implementation
included variables which had to be initialized.
This division into modules and independent implementation

will only result in a working program if the external character-
istics of each module were sufficiently well specified so that
the code could be written without looking at the implemen-
tation of other modules [1], [9]. This is clearly an extra ef-
fort which is not needed if only the stepwise refinement
method is used. In return for this effort one would gain the
ability to reverse the decision about table representation made
in stage 2 without even considering the code written to imple-
ment the policy introduced in stage 3. One also gains the abil-
ity to develop the two parts of the program without any com-

munication between the groups developing each one. This can

lead to a shorter development time and the ability to develop
several versions of the system simultaneously.

HOW THE MODULE SPECIFICATIONS DEFINE A FAMILY

Members of a family of programs defined by a set of module
specifications can vary in three principal ways.

1) Implementation methods used within the modules. Any
combination of sets of programs which meets the module
specifications is a member of the program family. Subfamilies
may be defined either by dividing each of the main modules
into submodules in alternative ways, or by using the method
of structured programming to describe a family of implemen--
tations for the module.
2) Variation in the external parameters. The module specifi-

cations can be written in terms of parameters so that a family
of specifications results. Programs may differ in the values of
those parameters and still be considered to be members of the
program family.
3) Use of subsets. In many situations one application will

require only a subset of the functions provided by a system.
We may consider programs which consist of a subset of the
programs described by a set of module specifications to be
members of a family as well. This is especially important in
the development of families of operating systems, where some
installations will require only a subset of the system provided
for another. The set of possible subsets is defined by the
"uses") relation between the individual programs [16].

WHICH METHOD TO USE

By now it should be clear that the two methods are neither
equivalent nor contradictory. Rather they are complemen-
tary. They are both based on the same basic ideas (see histori-
cal note which follows): 1) precise representations of the inter-
mediate stage in a program design, and 2) postponement of
certain decisions, while continuing to make progress towards
a completed progranL
Stepwise refinement (as practiced in the literature) en-

courages one to make decisions about sequencing early, be-
cause the intermediate representations are all programs. Post-
ponement of sequencing decisions until run time requires the
introduction of processes [13]. The method of module speci-
fication is not usually convenient for the expressing of se-
quencing decisions. (In our KWIC index project sequencing
had to be described by writing a brief "structured" "Main
Program," which was one of several possible ways that the
modules could have been used to produce a KWIC index. It
was written last!)
Stepwise refinement has the significant advantage that it

does not add to the total amount of effort required to design
the first complete family member. By keeping complexity in
control, it usually reduces the total amount of effort. In con-
trast, the module specifications represent a very significant
amount of extra effort. Experience has shown that the effort
involved in writing the set of specifications can be greater than
the effort that it would take to write one complete program.
The method permits the production of a broader family and
the completion of various parts of the system independently,
but at a significant cost. It usually pays to apply the method
only when one expects the eventual implementation of a wide
selection of possible family members. In contrast, the method
of stepwise refinement is always profitable.

RELATION OF THE QUESTION OF PROGRAM FAMILIES
TO PROGRAM GENERATORS

A common step taken by industrial maintainers of multi-
version programmers is the construction of system generation
programs. These programs are given a great deal of data de-
scribing the hardware configuration and software needs of the
users. Built into the generator is a description of a large family
of programs and the generator causes one member of the
family to materialize and be loaded on the target hardware.
The methods described in this paper are not intended to re-

7



www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MARCH 1976

place system generators. Since these methods are applied in
the design stage and generators are useful when a specific
family member must be produced. Stepwise refinement and
the method of module specification can simplify the work to
be done by a system generation program.
System generators would be completely unnecessary if we

wished to build a program which at run time could "simulate"
any member of the family. Such a program would be rela-
tively inefficient. By removing much of this variability at the
time that the program is generated, increases in productive
capacity are made possible.
Often a family of programs includes small members in which

certain variables are fixed and larger members in which these
factors may vary. For example, an operating system family
may include some small members where the number of pro-
cesses is fixed and other members where dynamic creation and
deletion is possible. The programs developed for the larger
members of the family can be used as part of the "generator,"
which produces a smaller member.

CONCLUDING REMARKS
Another way of comparing the two methods is to answer the

following often-heard questions.
1) When should we teach structured programming or step-

wise refinement to our students?
2) When should we teach about modules and specifications?
To the first question we can respond with another question:

"When should we teach unstructured programming?" The
second question, however, requires a "straight answer":
module design specifications should only be taught to students
who have learned to program well and have decided to proceed
further and learn methods appropriate to the production of
software packages [12].
One of the difficulties in applying the recent concepts of

structured programming is that there are no criteria by which
one may evaluate the structure of a system on an objective
basis. Aspiring practitioners must go to a famous artist and
ask for an evaluation. The "master" may then indicate
whether or not he considers the system "tasteful."
The concept of program families provides one way of con-

sidering program structure more objectively. For any precise
description of a program family (either an incomplete refine-
ment of a program or a set of specifications or a combination
of both) one may ask which programs have been excluded and
which still remain.
One may consider a program development to be good, if

the early decisions exclude only uninteresting, undesired, or
unnecessary programs. The decisions which remove desired
programs would be either postponed until a later stage or con-
fined to a well delimited subset of the code. Objective criti-
cism of a program's structure would be based upon the fact
that a decision or assumption which was likely to change has
influenced too much of the code either because it was made
too early in the development or because it was not confined
to an information hiding module.
Clearly this is not the only criterion which one may use in

evaluating program structures. Clarity (e.g., ease of under-
standing, ease of verification) is another quite relevant con-
sideration. Although there is some reason to suspect that the
two measures are not completely unrelated, there are no rea-
sons to assume that they will agree. For one thing, the "ease"
measures mentioned above are functions of the understander
or verifier, the set of programs being excluded by a design
decision can be interpreted objectively. Of course, the ques-
tion of which decisions are likely to require changing for some
family members is again a question which requires judgment
and experience. It is, however, a somewhat more concrete and
more easily discussed question than ease of comprehension.

HISTORICAL NOTE
In closing this comparison, I want to make a comment on

the origin and history of some of the ideas found in this paper.
I recently reread one of the papers in which Dijkstra intro-
duced the ideas of structured programming [3]. This paper is
unusual in that it seems better each time you read it. The root
of both methods of producing program families and the con-
cept of family itself is in this original work by Dijkstra. The
concept of the division into modules is somewhat differently
formulated, but it is present in the concept of the design of
the abstract machines, the notion of information hiding is im-
plicit (in the discussion of the thickness of the ropes tying the
pearls together). Module specification is not discussed. (Naur
introduced a concept quite similar to that of the module when
he discussed action clusters [101, but the concept of informa-
tion hiding was not made specific and the example does not
correspond exactly to what this principle would suggest.)
For various reasons the concept of division into modules and
the hiding of information seems to have attracted less atten-
tion, and later works by other authors [4], [5] have empha-
sized only the stepwise refimement of programs, ignoring the
order of the steps or the question of the thickness of the
ropes.

ACKNOWLEDGMENT
I am grateful for opportunities to discuss the subject with

members of I.F.I.P. Working Group 2.3 on Programming
Methodology. These discussions have helped me to clarify the
points in this paper. I am also grateful to W. Bartussek of the
Technische Hochschule Darmstadt, for his thoughtful com-
ments on an earlier version of this paper, to Dr. H. Mills of
the IBM Federal Systems Division who found a rather subtle
error in a recent draft, and to Dr. L. Belady of the IBM T. J.
Watson Research Laboratory who made a number of helpful
comments.

REFERENCES
[11 D. L. Parnas, "Some conclusions from an experiment in software

engineering techniques," in 1972 Fall Joint Computer Conf.,
AFIPS Conf. Proc., vol. 41. Montvale, NJ: AFIPS Press, 1972,
pp. 325-329.

[2] H. Mills, "Mathematical foundations of structured program-
ming," IBM Federal Systems Div., No. FSC72-6012, pp. 1-62,
Feb. 1972.

[3] E. W. Dijkstra, "Structured programming," in Software Engineer-

8



www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-2, NO. 1, MARCH 1976

ing Techniques, J. N. Buxton and B. Randell, Ed. Brussels,
Belgium: NATO Scientific Affairs Division, 1970, pp. 84-87.

[41 N. Wirth, "Program development by stepwise refinement," Com-
mun. ACM, vol. 14, pp. 221-227, Apr. 1971.

[51 W. A. Wulf, "The GOTO controversy: A case against the GOTO,"
SIGPLANNotices, vol. 7, pp. 63-69, Nov. 1972.

[6] C. A. R. Hoare, "Monitors: An operating system structuring con-
cept," Commun. ACM, vol. 17, pp. 549-557, Oct. 1974.

[7] E. W. Dijkstra, "On the axiomatic definition of semantics," EWD
367, privately circulated.

[8] D. L. Parnas, "On the criteria used in decomposing systems into
modules," Commun. ACM, vol. 15, pp. 1053-1058, Dec. 1972.

[9] -, "A technique for software module specification with
examples," Commun. ACM (Programming Techniques Dept.),
pp. 330-336, May 1972.

[10] P. 'Naur, "Programming by action clusters," BIT, vol. 9, pp. 250-
258, 1969.

[11] P. Henderson and R. Snowdon, "An experiment in structured
programming," BIT, vol. 12, pp. 38-53, 1972.

[12] D. L. Parnas, "A course on software engineering techniques," in
Proc. ACM SIGCSE, 2nd Tech. Symp., Mar. 24-25, 1972.

[13] E. W. Dijkstra, "Co-operating sequential processes," Programming
Languages, F. Genuys, Ed. New York: Academic Press, 1968,
pp. 43-112.

[14] W. R. Price, "Implications of a virtual memory mechanism for
implementing protection in a family of operating systems," Ph.D.
dissertation, Carnegie-Mellon Univ., Pittsburgh, PA, 1973.

[151 B. Randell and F. W. Zurcher, "Iterative multi-level modelling-
A methodology for computer system design," in Proc. IFIP
Congr., 1968.

[16] D. L. Parnas, "On a 'buzzword' hierarchical structure," in Proc.
IFIP Congr., 1974, pp. 336-339.

David L. Parnas received the B.S. and M.S. de-
grees in electrical engineering, and the Ph.D.
degree in systems and communications sciences,
from the Carnegie Institute of Technology,
Pittsburgh, PA, in 1961, 1964, and 1965,
respectively.
He has held the position of Assistant Profes-

u ,1li sor of Computer Science, University of Mary-
land, College Park, and was Assistant and
Associate Professor of Computer Science at
Carnegie-Mellon University, Pittsburgh, PA.

Since June of 1973 he has been Professor and Head of one of the two
Research Groups on Operating Systems at the Technische Hochschule
Darmstadt, Darmstadt, West Germany. He is also a consultant for the
U.S. Naval Research Laboratory, Washington, D.C. His areas of research
have been design methods for computer systems, process synchroniza-
tion in operating systems, security mechanisms in operating systems,
simulation techniques, and design automation.

Higher Order Software-A Methodology for
Defining Software

MARGARET HAMILTON AND SAYDEAN ZELDIN

Abstract-The key to software reliability is to design, develop, and
manage software with a formalized methodology which can be used by
computer scientists and applications engineers to describe and com-

municate interfaces between systems. These interfaces include: soft-
ware to software; software to other systems; software to management;
as well as discipline to discipline within the complete software develop-
ment process. The formal methodology of Higher Order Software
(HOS), specifically aimed toward large-scale multiprogrammed/multi-
processor systems, is dedicated to systems reliability. With six axioms
as the basis, a given system and all of its interfaces is defined as if it

Manuscript received May 1, 1975; revised October 15, 1975. This
paper was prepared under Contract NASA9-13809 with the Lyndon B.
Johnson Space Center of the National Aeronautics and Space Adminis-
tration, and under The Charles Stark Draper Laboratory, Inc., Internal
Research and Development Funds. The publication of this paper does
not constitute approval by the National Aeronautics and Space Admin-
istration of the findings or conclusions contained herein. It is published
only for the exchange and stimulation of ideas. The Charles Stark
Draper Laboratory, Inc., 68 Albany St., Cambridge, MA 02142 al-
ready holds the copyright to the contents contained in this manuscript.
The authors are with the Computer Science Division, The Charles

Stark Draper Laboratory, Inc., Cambridge, MA 02142.

were one complete and consistent computable system. Some of the de-
rived theorems provide for: reconfiguration of real-time multipro-
grammed processes, communication between functions, and prevention
of data and timing conflicts.
The rist step in defining a system with a formal methodology is to

apply a formalized set of rules. We have found that enforcing such
rules, especialy on a large project with many organizations, is very
difficult. In fact, it is almost impossible without the aid of automated
tools to describe the design process and its verification. We envision a
scheme in which the definition of a given system can be described
with an HOS specification language which, by its very nature, enforces
the axioms with the use of each construct. A system dermed in HOS
can be analyzed automatically for axiomatic consistency by the Design
Analyzer without program execution, and by the Structuring Executive
Analyzer on a real-time basis. The result is that a software system can
be developed efficiently with reliable interfaces. This is significant
since interface testing in a large system accounts for approximately
75 percent of the verification effort.'

1Seventy-three percent of all problems found during the APOLLO
integration effort were interface problems [2]; and verification accounts
for 50 percent of the total software development effort [3] -[5] .

9


